Axial spondyloarthritis - from inflammation to ankylosis
Ivanova et al. PDF (EN)
Ivanova et al. PDF (BG) (Български)

Keywords

Keywords: axial spondyloarthritis, ankylosing spondylitis, inflammation, new bone formation

How to Cite

Ivanova, M., Angelov, A., Vasilev, G., & Goycheva, P. (2022). Axial spondyloarthritis - from inflammation to ankylosis. Rheumatology (Bulgaria), 30(3), 44-58. https://doi.org/10.35465/30.3.2022.pp44-58

Abstract

Axial spondyloarthritis is a chronic inflammatory immune-mediated rheumatic disease that mainly affects the sacroiliac joints and the spine and encompasses both sub-units - ankylosing spondylitis and its preceding phase non-radiographic axial spondyloarthritis. The disease is characterized by two main immunopathological processes – chronic inflammation and pathological new bone formation, the causal relationship of which is still not fully understood. Starting as enthesopathic inflammation in the early stages, the disease progresses to ossifying enthesitis as a result of an abnormal immune response to skeletal biomechanical stress associated recurrent tissue microdamage, and a subsequent process of excessive repair and tissue remodeling. Immune-mediated inflammation manifests with a distinct skewing of differentiation towards a Th1/Th17 phenotype and an unbalanced profile of cytokine production, with cytokine dysregulation and predominance of the effects of pro-inflammatory cytokines. Molecular signaling pathways of syndesmophyte formation include bone morphogenetic protein (BMP), wingless-type like (WNT), Dickkopf-1 (Dkk-1), sclerostin, cytokines, and others. The review summarizes the current concepts regarding the pathophysiology of both pathognomonic processes for the disease – inflammation and pronounced osteoproliferation.

https://doi.org/10.35465/30.3.2022.pp44-58
Ivanova et al. PDF (EN)
Ivanova et al. PDF (BG) (Български)

References

  1. Sieper J, van der Heijde D. Review: nonradiographic axial spondyloarthritis: new definition of an old disease? Arthritis Rheum 2013;65:543-551.
  2. Sieper J, Braun J, Rudwaleit M, Boonen A, Zink A. Ankylosing spondylitis: an overview. Ann Rheum Dis 2002;61(Suppl 3):iii8-18.
  3. McGonagle D, McDermott MF. A proposed classification of the immunological diseases. PLoS Med 2006;3:e297.
  4. Lories RJ, Baeten DLP. Differences in pathophysiology between rheumatoid arthritis and ankylosing spondylitis. Clin Exp Rheumatol 2009;27:S10-4.
  5. Kimura A, Kishimoto T. IL-6: Regulator of Treg/Th17 balance. Eur J Immunol 2010;40:1830-1835.
  6. Astry B, Harberts E, Moudgil KD. A cytokine-centric view of the pathogenesis and treatment of autoimmune arthritis. J Interferon Cytokine Res 2011;31(12):927-940.
  7. Ivanova M, Stoilov R, Platikanova, Manolova I. A pilot study of serum levels of TNF-α in relation to clinical and laboratory parameters of disease activity in patients with ankylosing spondylitis from Bulgarian population. Revmatologiia 2011;19(2):25-30.
  8. Ivanova M, Manolova I, Gancheva R, Boyadzhieva V, Stoilov R, Stanilova S. Serum levels of IL-23 in ankylosing spondylitis and rheumatoid arthritis. Revmatologiia 2015;23(1):64-73.
  9. Jethwa H, Bowness P. The interleukin (IL)-23/IL-17 axis in ankylosing spondylitis: new advances and potentials for treatment. Clin Exp Immunol 2016;183(1):30-36.
  10. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, McClanahan T, Kastelein RA, Cua DJ. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 2005;201(2):233-240.
  11. Cua DJ, Tato CM. Innate IL-17-producing cells: the sentinels of the immune system. Nat Rev Immunol 2010;10(7):479-489.
  12. Simone D, Al Mossawi MH, Bowness P. Progress in our understanding of the pathogenesis of ankylosing spondylitis. Rheumatology 2018;57:vi4-vi9.
  13. van Hauwermeiren F, Vandenbroucke RE, Libert C. Treatment of TNF mediated diseases by selective inhibition of soluble TNF or TNFR1. Cytokine Growth Factor Rev 2011;22(5-6):311-319.
  14. Tracey KJ, Cerami A. Tumor Necrosis Factor: A Pleiotropic Cytokine and Therapuetic Target. Annu Rev Med 1994;45:491-503.
  15. Gomperts BD, Tatham PER, Kramer IM. Signal transduction (Pbk. ed., [Nachdr.]. ed.). Amsterdam [u.a.]: Elsevier Academic Press. 2004. ISBN 978-0122896323.
  16. Gaffen SL. Structure and signalling in the IL-17 receptor family. Nat Rev Immunol 2009;9(8):556-567.
  17. Yu J, Gaffen SL. Interleukin-17: A novel inflammatory cytokine that bridges innate and adaptive immunity. Front Biosci 2008;13:170-177.
  18. Laloux L, Voisin MC, Allain J, Martin N, Kerboull L, Chevalier X, Claudepierre P. Immunohistological study of entheses in spondyloarthropathies: comparison in rheumatoid arthritis and osteoarthritis. Ann Rheum Dis 2001;60(4):316-21.
  19. Benjamin M, McGonagle D. The anatomical basis for disease localisation in seronegative spondyloarthropathy at entheses and related sites. J Anat 2001;199(Pt 5):503-526.
  20. Benjamin M, Moriggl B, Brenner E, Emery P, McGonagle D, Redman S. The ‘enthesis organ’ concept: why enthesopathies may not present as focal insertional disorders. Arthritis Rheum 2004;50:3306-3313.
  21. McGonagle D, Lories RJ, Tan A, Benjamin M: The concept of a synovio-entheseal complex and its implications for understanding joint inflammation and damage in psoriatic arthritis and beyond. Arthritis Rheum 2007;56:2482-2491.
  22. McGonagle D, Stockwin L, Isaacs J, Emery P. An enthesitis based model for the pathogenesis of spondyloarthropathy. Additive effects of microbial adjuvant and biomechanical factors at disease sites. J Rheumatol 2001;28:2155-2159.
  23. Hall B.K. and Miyake T. All for one and one for all: condensations and the initiation of skeletal development. Bioessays 2000;22:138-147.
  24. Braun, J. and Sieper, J. Ankylosing spondylitis. Lancet 2007;369: 1379-1390.
  25. Lories RJ, Luyten FP, de Vlam K. Progress in spondylarthritis. Mechanisms of new bone formation in spondyloarthritis. Arthritis Res Ther 2009;11(2):221.
  26. Luu HH, Song WX, Luo X, Manning D, Luo J, Deng ZL, Sharff KA, Montag AG, Haydon RC, He TC. Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells. J Orthop Res 2007;25(5):665-677.
  27. Shen B, Bhargav D, Wei A, Williams LA, Tao H, Ma DD, Diwan AD. BMP-13 emerges as a potential inhibitor of bone formation. Int J Biol Sci 2009;5(2):192-200.
  28. Daluiski A, Engstrand T, Bahamonde ME, Gamer LW, Agius E, Stevenson SL, Cox K, Rosen V, Lyons KM. Bone morphogenetic protein-3 is a negative regulator of bone density. Nat Genet 2001;27(1):84-88.
  29. Bobacz K, Gruber R, Soleiman A, Erlacher L, Smolen JS, Graninger WB. Expression of bone morphogenetic protein 6 in healthy and osteoarthritic human articular chondrocytes and stimulation of matrix synthesis in vitro. Arthritis Rheum 2003;48(9):2501-2508.
  30. Tsuji K, Bandyopadhyay A, Harfe BD, Cox K, Kakar S, Gerstenfeld L, Einhorn T, Tabin CJ, Rosen V. BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet 2006;38(12):1424-1429.
  31. Asai-Coakwell M, French CR, Berry KM, Ye M, Koss R, Somerville M, Mueller R, van Heyningen V, Waskiewicz AJ, Lehmann OJ. GDF6, a novel locus for a spectrum of ocular developmental anomalies. Am J Hum Genet 2007;80(2):306-315.
  32. Selever J, Liu W, Lu M-F, Behringer RR, Martin JF. Bmp4 in limb bud mesoderm regulates digit pattern by controlling AER development. Dev Biol 2004;276(2):268-279.
  33. Zhao GQ, Liaw L, Hogan BL. Bone morphogenetic protein 8A plays a role in the maintenance of spermatogenesis and the integrity of the epididymis. Dev Camb Engl 1998;125(6):1103-1112.
  34. Hu J, Chen YX, Wang D, Qi X, Li TG, Hao J, Mishina Y, Garbers DL, Zhao GQ. Developmental expression and function of Bmp4 in spermatogenesis and in maintaining epididymal integrity. Developmental Biology 2004;276(1):158-171.
  35. Otsuka F, Yao Z, Lee T, Yamamoto S, Erickson GF, Shimasaki S. Bone morphogenetic protein-15. Identification of target cells and biological functions. J Biol Chem 2000;275(50):39523-39528.
  36. Persani L, Rossetti R, Di Pasquale E, Cacciatore C, Fabre S. The fundamental role of bone morphogenetic protein 15 in ovarian function and its involvement in female fertility disorders. Hum Reprod Update 2014;20(6):869-883.
  37. Urist, MR. Bone: formation by autoinduction. Science 1965;150: 893-899.
  38. Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM, Wang EA. Novel regulators of bone formation: molecular clones and activities. Science 1988;242(4885):1528-1534.
  39. Carter S, Braem K, Lories RJ. The role of bone morphogenetic proteins in ankylosing spondylitis. Ther Adv Musculoskelet Dis 2012;4(4):293-299.
  40. Scharstuhl A, Vitters EL, van der Kraan PM, van den Berg WB. Reduction of osteophyte formation and synovial thickening by adenoviral overexpression of transforming growth factor beta/bone morphogenetic protein inhibitors during experimental osteoarthritis. Arthritis Rheum 2003;48(12):3442-3451.
  41. Liao HT, Lin YF, Tsai CY, Chou TC. Bone morphogenetic proteins and Dickkopf-1 in ankylosing spondylitis. Scand J Rheumatol 2018;47(1):56-61.
  42. Park MC, Park YB, Lee SK. Relationship of bone morphogenetic proteins to disease activity and radiographic damage in patients with ankylosing spondylitis. Scand J Rheumatol 2008;37(3):200-204.
  43. Chen HA, Chen CH, Lin YJ, Chen PC, Chen WS, Lu CL, Chou CT. Association of bone morphogenetic proteins with spinal fusion in ankylosing spondylitis. J Rheumatol 2010;37(10):2126-2132.
  44. Lories RJ, Luyten FP. Bone morphogenetic proteins in destructive and remodeling arthritis . Arthritis Res Ther 2007;9:207
  45. Tamamura Y, Otani T, Kanatani N, Koyama E, Kitagaki J, Komori T, Yamada Y, Costantini F, Wakisaka S, Pacifici M, Iwamoto M, Enomoto-Iwamoto M. Developmental regulation of Wnt/betacatenin signals is required for growth plate assembly, cartilage integrity, and endochondral ossification. J Biol Chem 2005;280:19185-19195.
  46. Chen Y, Whetstone HC, Youn A, Nadesan P, Chow EC, Lin AC, Alman BA. Beta-catenin signaling pathway is crucial for bone morphogenetic protein 2 to induce new bone formation. J Biol Chem 2007;282:526-533.
  47. Delgado-Calle J, Sato AY, Bellido T. Role and mechanism of action of sclerostin in bone. Bone 2017;96:29-37.
  48. Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 2013;19(2):179-192.
  49. Gori F, Lerner U, Ohlsson C, Baron R. A new WNT on the bone: WNT16, cortical bone thickness, porosity and fractures. Bonekey Rep 2015;4:669.
  50. Appel H, Ruiz-Heiland G, Listing J, Zwerina J, Herrmann M, Mueller R, Haibel H, Baraliakos X, Hempfing A, Rudwaleit M, Sieper J, Schett G. Altered skeletal expression of sclerostin and its link to radiographic progression in ankylosing spondylitis. Arthritis Rheum 2009;60(11):3257-3262.
  51. Saad CG, Ribeiro AC, Moraes JC, Takayama L, Goncalves CR, Rodrigues MB, de Oliveira RM, Silva CA, Bonfa E, Pereira RM. Low sclerostin levels: A predictive marker of persistent inflammation in ankylosing spondylitis during anti-tumor necrosis factor therapy? Arthritis Res Ther 2012;14:R216.
  52. Heiland GR, Zwerina K, Baum W, Kireva T, Distler JH, Grisanti M, Asuncion F, Li X, Ominsky M, Richards W, Schett G, Zwerina J. Neutralisation of Dkk-1 protects from systemic bone loss during inflammation and reduces sclerostin expression. Ann Rheum Dis 2010;69:2152–2159.
  53. XieW, Zhou L, Li S, Hui T, Chen D. Wnt/_-catenin signaling plays a key role in the development of spondyloarthritis. Ann N Y Acad Sci 2016;1364:25-31.
  54. Daoussis D, Liossis SN, Solomou EE, Tsanaktsi A, Bounia K, Karampetsou M, Yiannopoulos G, Andonopoulos AP. Evidence that Dkk-1 is dysfunctional in Ankylosing Spondylitis. Arthritis Rheum 2010;62:150-158.
  55. Kwon SR, Lim MJ, Suh CH, Park SG, Hong YS, Yoon BY, Kim HA, Choi HJ, ParkW. Dickkopf-1level is lower in patients with ankylosing spondylitis than in healthy people and is not influenced by anti-tumor necrosis factor therapy. Rheumatol Int 2012;32:2523-2527.
  56. Szentpétery Á, Horváth Á, Gulyás K, Pethö Z, Bhattoa HP, Szántó S, Szücs G, FitzGerald O, Schett G, Szekanecz Z. Effects of targeted therapies on the bone in arthritides. Autoimmun Rev 2017;16:313-320.
  57. Sherlock JP, Joyce-Shaikh B, Turner SP, Chao CC, Sathe M, Grein J, Gorman DM, Bowman EP, McClanahan TK, Yearley JH, Eberl G, Buckley CD, Kastelein RA, Pierce RH, Laface DM, Cua DJ. IL-23 induces spondyloarthropathy by acting on ROR-γt+ CD3+CD4-CD8- entheseal resident T cells. Nat Med 2012;18(7):1069-1076.
  58. El-Zayadi AA, Jones EA, Churchman SM, Baboolal TG, Cuthbert RJ, El-Jawhari JJ, Badawy AM, Alase AA, El-Sherbiny YM, McGonagle D. Interleukin-22 drives the proliferation, migration and osteogenic differentiation of mesenchymal stem cells: a novel cytokine that could contribute to new bone formation in spondyloarthropathies. Rheumatology (Oxford) 2017;56(3):488-493.
  59. Chiowchanwisawakit P, Lambert RG, Conner-Spady B, Maksymowych WP. Focal fat lesions at vertebral corners on magnetic resonance imaging predict the development of new syndesmophytes in ankylosing spondylitis. Arthritis Rheum 2011;63:2215-2225.
  60. Baraliakos X, Listing J, Rudwaleit M, Sieper J, Braun J. The relationship between inflammation and new bone formation in patients with ankylosing spondylitis. Arthritis Res Ther 2008;10(5):R104.
  61. van der Heijde D, Landewé R, Baraliakos X, Houben H, van Tubergen A, Williamson P, Xu W, Baker D, Goldstein N, Braun J. Ankylosing Spondylitis Study for the Evaluation of Recombinant Infliximab Therapy Study Group. Radiographic findings following two years of infliximab therapy in patients with ankylosing spondylitis. Arthritis Rheum 2008;58(10):3063-3070.
  62. van der Heijde D, Landewé R, Einstein S, Ory P, Vosse D, Ni L, Lin SL, Tsuji W, Davis JC Jr. Radiographic progression of ankylosing spondylitis after up to two years of treatment with etanercept. Arthritis Rheum 2008;58(5):1324-1331.
  63. Maas F, Arends S, Brouwer E, Essers I, van der Veer E, Efde M, van Ooijen PMA, Wolf R, Veeger NJGM, Bootsma H, Wink FR, Spoorenberg A. Reduction in Spinal Radiographic Progression in Ankylosing Spondylitis Patients Receiving Prolonged Treatment With Tumor Necrosis Factor Inhibitors. Arthritis Care Res (Hoboken) 2017;69(7):1011-1019.
  64. Baraliakos X, Haibel H, Listing J, Sieper J, Braun J. Continuous long-term anti-TNF therapy does not lead to an increase in the rate of new bone formation over 8 years in patients with ankylosing spondylitis. Ann Rheum Dis 2014;73(4):710-715.
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Downloads

Download data is not yet available.