Estimation of the concentration of some biomarkers in serum of women with rheumatoid arthritis
Adlan et al. PDF (EN)

Keywords

Adiponectin
ACPA
CRP
VEGF
Rheumatoid Arthritis
Biomarkers

How to Cite

Adlan, M., Kata, F., & Alsulaitti, S. (2022). Estimation of the concentration of some biomarkers in serum of women with rheumatoid arthritis. Rheumatology (Bulgaria), 30(3), 59-66. https://doi.org/10.35465/30.3.2022.pp59-66

Abstract

The current study was conducted on women with rheumatoid arthritis (RA) in Basrah city, Iraq. The study aimed to evaluate the relationship between some biomarkers such as adiponectin hormone, anti-citrullinated protein antibody (ACPA), acute phase C-reactive protein (CRP) and vascular endothelial growth factor (VEGF) in the serum of female patients. In this study, 80 serum samples were collected from women and were distributed as follows: 56 serum samples from women with RA and 24 serum samples from non-infected women who were considered as a healthy group. The patient samples were divided into three categories depending on age, disease severity and duration. The samples were obtained from Basrah General Hospital. The results of the current study showed a significant increase in the concentration of adiponectin, ACPA, CRP and VEGF in RA patients compared to healthy subjects. In addition, there were significant differences in the concentration of these biomarkers between some of the three age groups and between the disease of severity and duration. The study concluded that all the biomarkers under investigation have increased their concentrations in the serum of women suffering from RA.

https://doi.org/10.35465/30.3.2022.pp59-66
Adlan et al. PDF (EN)

References

  1. Bathon, J.& Tehlirian, C.(2008). RA clinical and laboratory manifestations. In: Klippel JH, Stone JH, Crofford LJ, et al., eds. Primer on the Rheumatic Diseases. 13th ed. New York, NY: Springer: 114-121.
  2. Smolen, J. S., Landewé, R., Bijlsma, J., Burmester, G., Chatzidionysiou, K., Dougados, M., ... & Van Der Heijde, D. (2017). EULAR recommendations for the management of RA with synthetic and biological disease-modifying antirheumatic drugs: 2016 update . Annals of the rheumatic diseases, 76(6), 960-977. doi:10.1136/annrheumdis-2016-210715.
  3. Aletaha, D., Neogi, T., Silman, A. J., Funovits, J., Felson, D. T., Bingham III, C. O., ... & Hawker, G. (2010). 2010 RA classification criteria : an American College of Rheumatology/European League Against RA collaborative initiative. Arthritis & RA, 62(9), 2569-2581. doi.org/10.1002/art.27584 .
  4. Wang, Z. V., & Scherer, P. E. (2016). Adiponectin, the past two decades . Journal of molecular cell biology, 8(2), 93-100. doi:10.1093/jmcb/mjw011.
  5. Weschenfelder, C., Schaan de Quadros, A., Lorenzon dos Santos, J., Bueno Garofallo, S., & Marcadenti, A. (2020). Adipokines and adipose tissue-related metabolites, nuts and cardiovascular disease. Metabolites, 10(1), 32. ‏ doi.org/10.3390/metabo10010032.
  6. Berendoncks, A. M. V., Stensvold, D., Garnier, A., Fortin, D., Sente, T., Vrints, C. J., ... & Conraads, V. M. (2015). Disturbed adiponectin–AMPK system in skeletal muscle of patients with metabolic syndrome. European journal of preventive cardiology, 22(2), 203-205. doi .org / 10. 1177 / 2047487313508034.
  7. Parker-Duffen, J. L., Nakamura, K., Silver, M., Kikuchi, R., Tigges, U., Yoshida, S., ... & Walsh, K. (2013). T-cadherin is essential for adiponectin-mediated revascularization. Journal of Biological Chemistry, 288(34), 24886-24897. doi.org/10.1074/jbc.M113.454835 .
  8. Fantuzzi, G. (2005). Adipose tissue, adipokines, and inflammation. Journal of Allergy and clinical immunology, 115(5), 911-919. doi.org/10.1016/j.jaci.2005.02.023 .
  9. Kurowska, W., Kuca-Warnawin, E. H., Radzikowska, A., & Maśliński, W. (2017). The role of anti-citrullinated protein antibodies (ACPA) in the pathogenesis of RA. Central-European journal of immunology, 42(4), 390-398. doi: 10.5114/ceji.2017.72807 .
  10. Lee, C. Y., Wang, D., Wilhelm, M., Zolg, D. P., Schmidt, T., Schnatbaum, K., ... & Kuster, B. (2018). Mining the human tissue proteome for protein citrullination. Molecular & Cellular Proteomics, 17(7), 1378-1391. doi.org/10.1074/mcp.RA118.000696.
  11. Aggarwal, R., Liao, K., Nair, R., Ringold, S., & Costenbader, K. H. (2009). Anti-citrullinated peptide antibody assays and their role in the diagnosis of RA. Arthritis and RA, 61(11), 1472-1483. DOI: 10.1002/art.24827 .
  12. Hensvold, A. H., Frisell, T., Magnusson, P. K., Holmdahl, R., Askling, J., & Catrina, A. I. (2017). How well do ACPA discriminate and predict RA in the general population: a study based on 12 590 population-representative Swedish twins. Annals of the rheumatic diseases, 76(1), 119-125 .
  13. Pepys, M. B., & Hirschfield, G. M. (2003). C-reactive protein: a critical update. The Journal of clinical investigation, 111(12), 1805-1812 . doi.org/10.1172/JCI18921.
  14. Bray, C., Bell, L.N., Liang, H., Haykal, R., Kaiksow, F., Mazza, J.J.,& Yale, S.H. (2016). "Erythrocyte Sedimentation Rate and C-reactive Protein measurements and their relevance in clinical medicine" . Wisconsin Medical Journal (WMJ). 115 (6): 317–321.
  15. Devaraj, S., Valleggi, S., Siegel, D., & Jialal, I. (2010). Role of C-reactive protein in contributing to increased cardiovascular risk in metabolic syndrome. Current atherosclerosis reports, 12(2), 110-118. DOI: 10. 1007/ s11883-010-0098-3.
  16. McFadyen, J. D., Kiefer, J., Braig, D., Loseff-Silver, J., Potempa, L. A., Eisenhardt, S. U., & Peter, K. (2018). Dissociation of C-reactive protein localizes and amplifies inflammation: evidence for a direct biological role of C-reactive protein and its conformational changes. Frontiers in immunology, 9, 1351. doi.org/10.3389/fimmu.2018.01351.
  17. Birbrair, A., Zhang, T., Wang, Z. M., Messi, M. L., Mintz, A., & Delbono, O. (2015). Pericytes at the intersection between tissue regeneration and pathology. Clinical science, 128(2), 81-93. doi.org/10.1042/CS20140278.
  18. Holmes, K., Roberts, O. L., Thomas, A. M., & Cross, M. J. (2007). Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cellular signaling , 19(10), 2003-2012. doi.org/10.1016/j.cellsig.2007.05.013.
  19. Selvaraj S. K., Giri R. K., Perelman N., Johnson C., Malik P., & Kalra V. K.(2003)., “Mechanism of monocyte activation and expression of proinflammatory cytochemokines by placenta growth factor,” Blood, 102 (4) : 1515–1524 . doi.org/10.1182/blood-2002-11-3423.
  20. Tang, X., Yang, Y., Yuan, H., You, J., Burkatovskaya, M., & Amar, S. (2013). Novel transcriptional regulation of VEGF in inflammatory processes. Journal of cellular and molecular medicine, 17(3), 386-397. doi.org/10.1111/jcmm.12020 .
  21. Peng, Y. J., Shen, T. L., Chen, Y. S., Mersmann, H. J., Liu, B. H., & Ding, S. T. (2018). Adiponectin and adiponectin receptor 1 overexpression enhance inflammatory bowel disease. Journal of biomedical science, 25(1), 1-13. doi.org/10.1186/s12929-018-0419-3 .
  22. Lee, Y. H., & Bae, S. C. (2018). Circulating adiponectin and visfatin levels in RA and their correlation with disease activity: A meta‐analysis. International journal of rheumatic diseases, 21(3), 664-672 . doi.org/10.1111/1756-185X.13038 .
  23. Zhang, Y., Peltonen, M., Andersson-Assarsson, J. C., Svensson, P. A., Herder, C., Rudin, A., ... & Maglio, C. (2020). Elevated adiponectin predicts the development of RA in subjects with obesity. Scandinavian Journal of Rheumatology, 49(6), 452-460 . doi.org/10.1080/03009742.2020.1753808 .
  24. Shehzad, A., Iqbal, W., Shehzad, O., & Lee, Y. S. (2012). Adiponectin: regulation of its production and its role in human diseases. Hormones, 11(1), 8-20 . doi.org/10.1007/BF03401534 .
  25. Ouchi, N., & Walsh, K. (2007). Adiponectin as an anti-inflammatory factor. Clinica chimica acta, 380(1-2), 24-30 . doi.org/10.1016/j.cca.2007.01.026 .
  26. Bucci, L., Yani, S. L., Fabbri, C., Bijlsma, A. Y., Maier, A. B., Meskers, C. G., ... & Salvioli, S. (2013). Circulating levels of adipokines and IGF-1 are associated with skeletal muscle strength of young and old healthy subjects. Biogerontology, 14(3), 261-272 . doi.org/10.1007/s10522-013-9428-5.
  27. Rho, Y. H., Solus, J., Sokka, T., Oeser, A., Chung, C. P., Gebretsadik, T., ... & Stein, C. M. (2009). Adipocytokines are associated with radiographic joint damage in RA. Arthritis & RA: Official Journal of the American College of Rheumatology, 60(7), 1906-1914. doi.org/10.1002/art.24626.
  28. Giles, J. T., Allison, M., Bingham III, C. O., Scott Jr, W. M., & Bathon, J. M. (2009). Adiponectin is a mediator of the inverse association of adiposity with radiographic damage in RA. Arthritis Care & Research : Official Journal of the American College of Rheumatology, 61(9), 1248-1256 . doi.org/10.1002/art.24789 .
  29. Klein‐Wieringa, I. R., van der Linden, M. P., Knevel, R., Kwekkeboom, J. C., van Beelen, E., Huizinga, T. W., ... & Ioan‐Facsinay, A. (2011) . Baseline serum adipokine levels predict radiographic progression in early RA. Arthritis & RA, 63(9), 2567-2574. doi.org/10.1002/art.30449.
  30. Liu, T., Tan, W., & Zhang, M. (2010). Change and clinical significance of adiponectin in patients with RA. Jiangsu Medical Journal, 36, 1744-1746 .
  31. Kastbom, A., Roos Ljungberg, K., Ziegelasch, M., Wetterö, J., Skogh, T., & Martinsson, K. (2018). Changes in anti‐citrullinated protein antibody isotype levels in relation to disease activity and response to treatment in early RA. Clinical & Experimental Immunology, 194(3), 391-399 . doi.org/10.1111/cei.13206 .
  32. Kelmenson, L. B., Wagner, B. D., McNair, B. K., Frazer‐Abel, A., Demoruelle , M. K., Bergstedt, D. T., ... & Deane, K. D. (2020). Timing of elevations of autoantibody isotypes prior to diagnosis of RA. Arthritis & Rheumatology, 72(2), 251-261. doi.org/10.1002/art.41091.
  33. Krishnamurthy, A., Joshua, V., Hensvold, A. H., Jin, T., Sun, M., Vivar, N., ... & Catrina, A. I. (2016). Identification of a novel chemokine-dependent molecular mechanism underlying RA-associated autoantibody-mediated bone loss. Annals of the rheumatic diseases, 75(4): 721-729 . doi.org/10.1136/annrheumdis-2015-208093.
  34. Barbarroja, N., Pérez-Sanchez, C., Ruiz-Limon, P., Castro-Villegas,C., Aguirre, M. A.,Carretero, R., ...& López-Pedrera,C. (2014). Anticyclic citrullinated protein antibodies are implicated in the development of cardiovascular disease in RA. Arteriosclerosis, thrombosis, and vascular biology, 34(12), 2706-2716 . doi.org/10.1161/ATVBAHA.114.304475 .
  35. Vadasz, Z., Haj, T., Kessel, A., & Toubi, E. (2013). Age-related autoimmunity. BMC Medicine, 11(1), 1-4. doi.org/10.1186/1741-7015-11-94.
  36. Van Zanten, A., Arends, S., Roozendaal, C., Limburg, P. C., Maas, F., Trouw, L. A., ... & Brouwer, E. (2017). Presence of anticitrullinated protein antibodies in a large population-based cohort from the Netherlands. Annals of the rheumatic diseases, 76(7), 1184-1190 . doi.org/10.1136/annrheumdis-2016-209991.
  37. Kokkonen, H., Mullazehi, M., Berglin, E., Hallmans, G., Wadell, G., Rönnelid, J., & Rantapää-Dahlqvist, S. (2011). Antibodies of IgG, IgA and IgM isotypes against cyclic citrullinated peptide precede the development of RA. Arthritis research & therapy, 13(1), 1-10 . doi.org/10.1186/ar3237 .
  38. Roos Ljungberg, K. R., Börjesson, E., Martinsson, K., Wetterö, J., Kastbom , A., & Svärd, A. (2020). Presence of salivary IgA anti-citrullinated protein antibodies associate with higher disease activity in patients with RA. Arthritis research & therapy, 22(1), 1-10. doi.org/10.1186/s13075-020-02363-0 .
  39. Engström, M., Eriksson, K., Lee, L., Hermansson, M., Johansson, A., Nicholas, A. P., ... & Yucel-Lindberg, T. (2018). Increased citrullination and expression of peptidylarginine deiminases independently of P. gingivalis and A. actinomycetemcomitans in gingival tissue of patients with periodontitis. Journal of translational medicine, 16(1), 1-14. doi.org/10.1186/s12967-018-1588-2 .
  40. Graf, J., Scherzer, R., Grunfeld, C., & Imboden, J. (2009). Levels of C-reactive protein associated with high and very high cardiovascular risk are prevalent in patients with RA. PLoS One, 4(7), e6242. doi:10.1371/journal.pone.0006242 .
  41. Shrivastava, A. K., Singh, H. V., Raizada, A., Singh, S. K., Pandey, A., Singh, N., …& Sharma, H. (2015). Inflammatory markers in patients with RA. Allergologia et Immunopathologia, 43(1), 81–87. doi.org/10.1016/j.aller.2013.11.003.
  42. Bay-Jensen, A. C., Platt, A., Jenkins, M. A., Weinblatt, M. E., Byrjalsen, I., Musa, K., ... & Karsdal, M. A. (2019). Tissue metabolite of type I collagen, C1M, and CRP predicts structural progression of RA. BMC rheumatology, 3(1), 1-10 . doi.org/10.1186/s41927-019-0052-0.
  43. Pieroni, L., Bastard, J. P., Piton, A., Khalil, L., Hainque, B., & Jardel, C. (2003). Interpretation of circulating C-reactive protein levels in adults: body mass index and gender are a must. Diabetes & metabolism, 29(2),133-138. doi.org/10.1016/S1262-3636(07)70019-8.
  44. Lakoski, S. G., Cushman, M., Criqui, M., Rundek, T., Blumenthal, R. S., D'Agostino Jr, R. B., & Herrington, D. M. (2006). Gender and C-reactive protein: data from the Multiethnic Study of Atherosclerosis (MESA) cohort. American heart journal, 152(3), 593-598 . doi.org/10.1016/j.ahj.2006.02.015 .
  45. Kawamoto, R., Kusunoki, T., Abe, M., Kohara, K., & Miki, T. (2013). An association between body mass index and high-sensitivity C-reactive protein concentrations is influenced by age in community-dwelling persons. Annals of clinical biochemistry, 50(5), 457-464. DOI:10.1177/0004563212473445.
  46. Siemons, L., Ten Klooster, P. M., Vonkeman, H. E., van Riel, P. L., Glas, C. A., & van de Laar, M. A. (2014). How age and sex affect the erythrocyte sedimentation rate and C-reactive protein in early RA. BMC Musculoskeletal Disorders, 15(368), 1-7. doi.org/10.1186/1471-2474-15-368 .
  47. Kao, T. W., Lu, I. S., Liao, K. C., Lai, H. Y., Loh, C. H., & Kuo, H. K. (2009). Associations between body mass index and serum levels of C-reactive protein. South African Medical Journal, 99(5),326-330.
  48. Dessein P.H., Joffe B.I.& Stanwix A.E.(2004). High sensitivity C-reactive protein as a disease activity marker in RA. The Journal of rheumatology, 31(6), 1095-1097.
  49. Cylwik, B., Chrostek, L., Gindzienska-Sieskiewicz, E., Sierakowski, S., & Szmitkowski, M. (2010). Relationship between serum acute-phase proteins and high disease activity in patients with RA. Advances in Medical Sciences, 55(1), 80–85 . doi.org/10.2478/v10039-010-0006-7 .
  50. Kim, K.-W., Kim, B.-M., Moon, H.-W., Lee, S.-H., & Kim, H.-R. (2015). Role of C-reactive protein in osteoclastogenesis in RA. Arthritis Research & Therapy, 17(1),1-12. doi.org/10.1186/s13075-015-0563-z .
  51. Lee, S. S., Joo, Y. S., Kim, W. U., Min, D. J., Min, J. K., Park, S. H., ... & Kim, H. Y. (2001). Vascular endothelial growth factor levels in the serum and synovial fluid of patients with RA. Clinical and Experimental Rheumatology, 19(3), 321-324.
  52. Koch, A.E.(2003). Angiogenesis as a target in RA. Annals of the rheumatic diseases. 62(suppl 2), 60–67 . doi.org/10.1136/ard.62.suppl_2.ii60 .
  53. Lee,Y.H. & Bae,S.C.(2016). Correlation between circulating VEGF levels and disease activity in RA: ameta analysis . Zeitschrift für Rheumatologie,77(3),240-248 . doi:10.1007/s00393-016-0229-5 .
  54. Azizi, G., Boghozian, R., & Mirshafiey, A. (2014). The potential role of angiogenic factors in RA. International journal of rheumatic diseases, 17(4), 369-383. doi:10.1111/1756-185x.12280 .
  55. Kim, H. R., Kim, K. W., Kim, B. M., Cho, M. L., & Lee, S. H. (2015). The effect of vascular endothelial growth factor on osteoclastogenesis in RA. PLoS One, 10(4), e0124909. doi.org/10.1371/journal.pone.0124909 .
  56. Smets, P., Devauchelle-Pensec, V., Rouzaire, P. O., Pereira, B., Andre, M., & Soubrier, M. (2016). Vascular endothelial growth factor levels and rheumatic diseases of the elderly. Arthritis research and therapy, 18(1), 1-6. DOI 10.1186/s13075-016-1184-x .
  57. Taylor, P. C. (2005). Serum vascular markers and vascular imaging in assessment of RA disease activity and response to therapy. Rheumatology, 44(6), 721-728 . doi.org/10.1093/rheumatology/keh524.‏
  58. Vordenbäumen, S., Sewerin, P., Lögters, T., Miese, F., Schleich, C., Bleck, E., ... & Ostendorf, B. (2014). Inflammation and vascularisation markers of arthroscopically-guided finger joint synovial biospies reflect global disease activity in RA. Clinical and experimental rheumatology, 32(1), 117-120 . 59. Kim, J. W., Kong, J. S., Lee, S., Yoo, S. A., Koh, J. H., Jin, J., & Kim, W. U. (2020). Angiogenic cytokines can reflect the synovitis severity and treatment response to biologics in RA. Experimental & molecular medicine, 52(5), 843-853. doi.org/10.1038/s12276-020-0443-8. ‏
  59. Pinheiro, G. R. C., Andrade, C. A. F., Gayer, C. R., Coelho, M. S., Freire, S. M., & Scheinberg, M. A. (2001). Serum vascular endothelial growth factor in late RA. Clinical and experimental rheumatology, 19(6), 721-723 . doi:10.1136/annrheumdis-2015-208980 . ‏
  60. Ozgonenel, L., Cetin, E., Tutun, S., Tonbaklar, P., Aral, H., & Guvenen, G. (2010). The relation of serum vascular endothelial growth factor level with disease duration and activity in patients with RA. Clinical rheumatology, 29(5), 473-477 . doi.org/10.1007/s10067-009-1343-4.
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.