Mitochondrial dysfunction and biological therapy: a new look at rheumatoid arthritis
PDF EN
PDF BG (Български)

Keywords

mitocchondrial dysfunction

How to Cite

Kostova, T., Mihaylova, V., Karalilova, R., Batalov, Z., Kazakova, M., & Batalov, A. (2022). Mitochondrial dysfunction and biological therapy: a new look at rheumatoid arthritis. Rheumatology (Bulgaria), 30(1), 51-65. https://doi.org/10.35465/30.1.2022.pp51-65

Abstract

A marked increase in interest towards the mitochondria and their implication into the pathogenesis of various immune-mediated diseases is observed. A multitude of studies are establishing the mitochondrial dysfunction and it's pathophysiological sequelae as key events, contributing to the progression of  rheumatoid arthritis. The oxidative stress and release of mitochondrial molecules into the intra- and extracelular compartments are a result of the loss of function and integrity of the mitochondria. Some biomarkers, which accurately reflect the state of oxidative stress in rheumatoid arthritis patients, have been successfuly identified. The change in the levels of those markers as a result of treatment with biologic DMARDs (bDMARDs) has been analyzed. However, there is still insufficient data regarding the effect of the target-synthetic DMARDs (tsDMARDs) on the oxidative stress.

https://doi.org/10.35465/30.1.2022.pp51-65
PDF EN
PDF BG (Български)

References

  1. Smolen JS, Aletaha D, Barton A et al. Rheumatoid arthritis. Nat Rev Dis Prim. 2018 Feb;4:18001.
  2. Schett G, Firestein GS. Mr Outside and Mr Inside: classic and alternative views on the pathogenesis of rheumatoid arthritis. Ann Rheum Dis. 2010 May;69(5):787–9.
  3. Müller-Ladner U, Ospelt C, Gay S et al. Cells of the synovium in rheumatoid arthritis. Synovial fibroblasts. Arthritis Res Ther. 2007;9(6):223.
  4. Fearon U, Canavan M, Biniecka M et al. Hypoxia, mitochondrial dysfunction and synovial invasiveness in rheumatoid arthritis. Nat Rev Rheumatol. 2016 Jul;12(7):385–97.
  5. Panga V, Kallor AA, Nair A et al. Mitochondrial dysfunction in rheumatoid arthritis: A comprehensive analysis by integrating gene expression, protein-protein interactions and gene ontology data. PLoS One. 2019;14(11):e0224632.
  6. García-González A, Gaxiola-Robles R, Zenteno-Savín T. Oxidative stress in patients with rheumatoid arthritis. Rev Investig Clin organo del Hosp Enfermedades la Nutr. 2015;67(1):46–53.
  7. Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003 Oct;552(Pt 2):335–44.
  8. Smallwood MJ, Nissim A, Knight AR et al. Oxidative stress in autoimmune rheumatic diseases. Free Radic Biol Med. 2018 Sep;125:3–14.
  9. Ng CT, Biniecka M, Kennedy A et al. Synovial tissue hypoxia and inflammation in vivo. Ann Rheum Dis. 2010 Jul;69(7):1389–95.
  10. Phull A-R, Nasir B, Haq IU et al. Oxidative stress, consequences and ROS mediated cellular signaling in rheumatoid arthritis. Chem Biol Interact. 2018 Feb;281:121–36.
  11. Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem. 2015 Jan;30(1):11–26.
  12. Filippin LI, Vercelino R, Marroni NP et al. Redox signalling and the inflammatory response in rheumatoid arthritis. Clin Exp Immunol. 2008 Jun;152(3):415–22.
  13. Collins LV, Hajizadeh S, Holme E et al. Endogenously oxidized mitochondrial DNA induces in vivo and in vitro inflammatory responses. J Leukoc Biol. 2004 Jun;75(6):995–1000.
  14. Valcárcel-Ares MN, Riveiro-Naveira RR, Vaamonde-García C et al. Mitochondrial dysfunction promotes and aggravates the inflammatory response in normal human synoviocytes. Rheumatology (Oxford). 2014 Jul;53(7):1332–43.
  15. Biniecka M, Fox E, Gao W et al. Hypoxia induces mitochondrial mutagenesis and dysfunction in inflammatory arthritis. Arthritis Rheum. 2011 Aug;63(8):2172–82.
  16. Biniecka M, Kennedy A, Ng CT et al. Successful tumour necrosis factor (TNF) blocking therapy suppresses oxidative stress and hypoxia-induced mitochondrial mutagenesis in inflammatory arthritis. Arthritis Res Ther. 2011 Jul;13(4):R121.
  17. Ott M, Gogvadze V, Orrenius S et al. Mitochondria, oxidative stress and cell death. Apoptosis. 2007 May;12(5):913–22.
  18. Costa NT, Iriyoda TMV, Alfieri DF et al. Influence of disease-modifying antirheumatic drugs on oxidative and nitrosative stress in patients with rheumatoid arthritis. Inflammopharmacology. 2018 Oct;26(5):1151–64.
  19. Hajizadeh S, DeGroot J, TeKoppele JM et al. Extracellular mitochondrial DNA and oxidatively damaged DNA in synovial fluid of patients with rheumatoid arthritis. Arthritis Res Ther. 2003;5(5):R234-40.
  20. Fenga C, Gangemi S, Teodoro M et al. 8-Hydroxydeoxyguanosine as a biomarker of oxidative DNA damage in workers exposed to low-dose benzene. Toxicol reports. 2017;4:291–5.
  21. McGarry T, Biniecka M, Veale DJ et al. Hypoxia, oxidative stress and inflammation. Free Radic Biol Med. 2018 Sep;125:15–24.
  22. Dalle-Donne I, Rossi R, Giustarini D et al. Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta. 2003 Mar;329(1–2):23–38.
  23. Lemarechal H, Allanore Y, Chenevier-Gobeaux C et al. Serum protein oxidation in patients with rheumatoid arthritis and effects of infliximab therapy. Clin Chim Acta. 2006 Oct;372(1–2):147–53.
  24. Martel-Pelletier J, Pelletier J-P, Fahmi H. Cyclooxygenase-2 and prostaglandins in articular tissues. Semin Arthritis Rheum. 2003 Dec;33(3):155–67.
  25. Nakahira K, Hisata S, Choi AMK. The Roles of Mitochondrial Damage-Associated Molecular Patterns in Diseases. Antioxid Redox Signal. 2015 Dec;23(17):1329–50.
  26. Deng GM, Nilsson IM, Verdrengh M et al. Intra-articularly localized bacterial DNA containing CpG motifs induces arthritis. Nat Med. 1999 Jun;5(6):702–5.
  27. Krieg AM. Therapeutic potential of Toll-like receptor 9 activation. Nat Rev Drug Discov. 2006 Jun;5(6):471–84.
  28. Davis BK, Wen H, Ting JP-Y. The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol. 2011;29:707–35.
  29. Kageyama Y, Takahashi M, Nagafusa T et al. Etanercept reduces the oxidative stress marker levels in patients with rheumatoid arthritis. Rheumatol Int. 2008 Jan;28(3):245–51.
  30. Lopez-Pedrera C, Barbarroja N, Patiño-Trives AM et al. Effects of Biological Therapies on Molecular Features of Rheumatoid Arthritis. Int J Mol Sci. 2020 Nov;21(23).
  31. Cacciapaglia F, Anelli MG, Rizzo D et al. Influence of TNF-α inhibition on oxidative stress of rheumatoid arthritis patients. Reumatismo. 2015 Dec;67(3):97–102.
  32. Túnez I, Feijóo M, Huerta G et al. The effect of infliximab on oxidative stress in chronic inflammatory joint disease. Curr Med Res Opin. 2007 Jun;23(6):1259–67.
  33. Kageyama Y, Ichikawa T, Nagafusa T et al. Etanercept reduces the serum levels of interleukin-23 and macrophage inflammatory protein-3 alpha in patients with rheumatoid arthritis. Rheumatol Int. 2007 Dec;28(2):137–43.
  34. Kageyama Y, Takahashi M, Ichikawa T et al. Reduction of oxidative stress marker levels by anti-TNF-alpha antibody, infliximab, in patients with rheumatoid arthritis. Clin Exp Rheumatol [Internet]. 2008;26(1):73—80. Available from: http://europepmc.org/abstract/MED/18328150
  35. Hirao M, Yamasaki N, Oze H et al. Serum level of oxidative stress marker is dramatically low in patients with rheumatoid arthritis treated with tocilizumab. Rheumatol Int. 2012 Dec;32(12):4041–5.
  36. Ruiz-Limón P, Ortega R, Arias de la Rosa I et al. Tocilizumab improves the proatherothrombotic profile of rheumatoid arthritis patients modulating endothelial dysfunction, NETosis, and inflammation. Transl Res. 2017 May;183:87–103.
  37. Friedman B, Cronstein B. Methotrexate mechanism in treatment of rheumatoid arthritis. Jt bone spine. 2019 May;86(3):301–7.
  38. Coury FF, Weinblatt ME. Clinical trials to establish methotrexate as a therapy for rheumatoid arthritis. Clin Exp Rheumatol. 2010;28(5 Suppl 61):S9-12.
  39. Cannella AC, O’Dell JR. Chapter 61 - Traditional DMARDs: Methotrexate, Leflunomide, Sulfasalazine, Hydroxychloroquine, and Combination Therapies. In: Firestein GS, Budd RC, Gabriel SE, McInnes IB, O’Dell JRBT-K and FT of R (Tenth E, editors. Elsevier; 2017. p. 958-982.e7.
  40. Padjen I, Crnogaj MR, Anić B. Conventional disease-modifying agents in rheumatoid arthritis - a review of their current use and role in treatment algorithms. Reumatologia. 2020;58(6):390–400.
  41. Xuan J, Ren Z, Qing T et al. Mitochondrial dysfunction induced by leflunomide and its active metabolite. Toxicology. 2018 Mar;396–397:33–45.
  42. Niknahad H, Heidari R, Mohammadzadeh R et al. Sulfasalazine induces mitochondrial dysfunction and renal injury. Ren Fail. 2017 Nov;39(1):745–53.
  43. Weinblatt ME, Reda D, Henderson W et al. Sulfasalazine treatment for rheumatoid arthritis: a metaanalysis of 15 randomized trials. J Rheumatol. 1999 Oct;26(10):2123–30.
  44. Boya P, Gonzalez-Polo R-A, Poncet D et al. Mitochondrial membrane permeabilization is a critical step of lysosome-initiated apoptosis induced by hydroxychloroquine. Oncogene. 2003 Jun;22(25):3927–36.
  45. Bykerk V, Haraoui B. Chapter 65 - Synthetic disease - modifying antirheumatic drugs and leflunomide. In: Hochberg MC, Gravallese EM, Silman AJ, editors. Elsevier; 2019. p. 502–9.
  46. Yam JCS, Kwok AKH. Ocular toxicity of hydroxychloroquine. Hong Kong Med J = Xianggang yi xue za zhi. 2006 Aug;12(4):294–304.
  47. Tutuncu Z, Kavanaugh A. Chapter 63 - Anti-cytokine Therapies. In: Firestein GS, Budd RC, Gabriel SE, McInnes IB, O’Dell JRBT-K and FT of R (Tenth E, editors. Elsevier; 2017. p. 999–1019.
  48. Downey C. Serious infection during etanercept, infliximab and adalimumab therapy for rheumatoid arthritis: A literature review. Int J Rheum Dis. 2016 Jun;19(6):536–50.
  49. Shetty A, Hanson R, Korsten P et al. Tocilizumab in the treatment of rheumatoid arthritis and beyond. Drug Des Devel Ther. 2014;8:349–64.
  50. McGarry T, Orr C, Wade S et al. JAK/STAT Blockade Alters Synovial Bioenergetics, Mitochondrial Function, and Proinflammatory Mediators in Rheumatoid Arthritis. Arthritis Rheumatol (Hoboken, NJ). 2018 Dec;70(12):1959–70.
  51. Taylor PC. Clinical efficacy of launched JAK inhibitors in rheumatoid arthritis. Rheumatology (Oxford). 2019 Feb;58(Suppl 1):i17–26.
  52. Olivera PA, Lasa JS, Bonovas S et al. Safety of Janus Kinase Inhibitors in Patients With Inflammatory Bowel Diseases or Other Immune-mediated Diseases: A Systematic Review and Meta-Analysis. Gastroenterology. 2020 May;158(6):1554-1573.e12.
  53. Sunzini F, McInnes I, Siebert S. JAK inhibitors and infections risk: focus on herpes zoster. Ther Adv Musculoskelet Dis. 2020;12:1759720X20936059.
  54. Fonseca LJS da, Nunes-Souza V, Goulart MOF et al. Oxidative Stress in Rheumatoid Arthritis: What the Future Might Hold regarding Novel Biomarkers and Add-On Therapies. Tundis R, editor. Oxid Med Cell Longev [Internet]. 2019;2019:7536805. Available from: https://doi.org/10.1155/2019/7536805
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Downloads

Download data is not yet available.