ACPA IN SALIVA AND THEIR ASSOCIATION WITH PERIODONTITIS AND RHEUMATOID ARTHRITIS

T. Bolyarova-Konova¹, L. Stefanov¹, Zl. Kolarov², D. Tanev³, P. Yankova⁴

¹Faculty of Dental Medicine, Department of Periodontology, MU – Sofia
²Clinic of Rheumatology, University Hospital „Sv. Ivan Rilski“, MU – Sofia
³Rheumatology Ward, UMHAT Sofia Med – Sofia
⁴Department of Clinical Immunology and Stem Cells Bank, University Hospital „Alexandrovska“, MU – Sofia

Abstract. Anti-cyclic citrullinated peptide antibodies (ACPA) are formed by the action of host-generated antigens and are part of the etiology of rheumatoid arthritis (RA). They are a sensitive and highly specific indicator of RA. In the study were involved 105 subjects aged 32 to 85 years (Mean age 50.6 ± 13.07), divided into four groups: Group I – with periodontitis (P) and without RA – 26 patients; Group II – with P and RA – 28 patients; Group III – without P and with RA – 26 patients; Group IV – without P and RA – 25 individuals. All patients underwent clinical and laboratory tests for the diagnosis of RA and osteoarthritis, a clinical periodontal examination, and unstimulated whole saliva was collected. We found significantly higher salivary ACPA levels in RA patients compared to healthy subjects (p < 0.0001). In P patients, we found significantly higher levels of ACPA in saliva than in healthy subjects (p < 0.0001). Among P patients, we found a significant correlation of ACPA concentration in saliva with the following indicators: serum ACPA concentration (p < 0.0001); serum RF concentration (p < 0.0001); DAS 28 (CRP) (p = 0.009). Based on the established
correlation between salivary ACPA levels and RA indicators, a high concentration of ACPA in saliva may be suggested as an easily accessible indicator of RA, but further studies are needed to ascertain this possibility.

The established association between periodontal parameters and salivary ACPA levels confirms the effect of periodontal inflammation on salivary ACPA concentration and justifies the treatment of P as a way of preventing and controlling RA.

Key words: ACPA, periodontitis, rheumatoid arthritis

INTRODUCTION

In the last two decades, anti-cyclic citrullinated peptide antibody (ACPA) has been known as antibodies formed by the action of antigens originated in the body, and ACPA are part of the etiology of rheumatoid arthritis (PA). ACPA are a sensitive indicator of RA, but significantly more specific than the Rheumatoid factor (RF) for diagnosing RA, and can be found in RF-negative patients with RA. [1, 2]. Their presence in blood serum is associated with more severe clinical signs, greater bone destruction, and a greater risk of an aggressive course of the disease [3]. The role of the extraarticular citrullination in the pathogenesis of RA remains to be elucidated. There is evidence that in the case of periodontitis (P), the enzyme peptidylarginine deaminase (PPAD) of periodontal pathogen Porphyromonas gingivalis and human PAD-4 are major factors in peptide citrullination in inflamed periodontal tissues, which stimulates ACPA production. Saliva collection, on the other hand, is easy, fast, inexpensive, and non-invasive, making it a convenient biological fluid for the diagnosis and monitoring of RA if disease markers are identified in it.

OBJECTIVE

To determine ACPA concentration in saliva in patients with P, with RA, with both diseases, and in healthy subjects. Comparison of salivary and serum ACPA levels. Comparison of ACPA concentration in saliva with clinical periodontal parameters and with RA indicators.

MATERIAL AND METHODS

The study involved a total of 105 patients, aged 32 to 85 years (Mean age 50.6 ± 13.07), 71 women and 34 men, divided into four groups: Group I – patients with P and without RA (diagnosed osteoarthri-
Пациентите, които са включени в изследването, са над 18 години, имат най-малко девет зъба в устата, не им е провеждана антибиотична терапия през последните три месеца, не им е провеждано пародонтално лечение през последните шест месеца, нямат нужда от антибиотична профилактика по време на процедури в устата, включително пародонтално сондиране. Изключват се пациенти, които имат диабет или друго заболяване, повлияващо имунния статус. Изключват се бременни и кърмачки жени.

Изследването е проведено в съгласие с етичните норми от Декларацията от Хелзинки на Световната медицинска асоциация. Институционалният съвет по медицински науки на Медицински университет – София, одобри протоколите на изследването, включително клинични изследвания и събирането на слюнка. Всички субекти подписаха информирано съгласие, преди да влязат в проекта и след като прочетоха уведомителното писмо.

При всички пациенти са извършени клинични и лабораторни изследвания за диагностика на РА и остеоартроза – анамнеза, физикално изследване, пълна кръвна картина, възпалителни биомаркери – скорост на утаяване на еритроцитите, С-реактивен протеин; имунологични показатели – концентрация на ревматоиден фактор от клас IgM (RF-IgM) в серум и концентрация на ACPA в серум. От всички пациенти е взета периферна кръв от кубитална вена на гладно, която се използва за изследване в клинична лаборатория и клинична имунология. Направено е рентгенографско изследване на длани и пръсти на двете ръце във връзка с диагностика на ставното заболяване. Определен е показателят за болестна активност (Disease Activity Score – CRP (DAS-28 (CRP)), който е съвкупен индекс, включващ клинични и лабораторни данни.

При всички пациенти са извършени клинично пародонтално изследване чрез хигиенен индекс (HI), индекс за кървене от папилата (PBI); определение дълбочината на пародонталния джоб при сондиране (PD); определение на загубата на клиничен аташман (CAL); определение на показателя кървене при сондиране (BOP); наличие на рецесиси за всяка пародонтална единица. Изследването се извършва със специализирана градуирана пародонтална сонда на всяка пародонтална единица – 26 пациенти; Group II – пациенти с P и RA – 28 пациенти; Group III – пациенти без P (с пародонтално здраве) и с RA – 26 пациенти; Group IV – пациенти без P (пародонтално здраве) и RA – 25 пациенти.

Patients included in the study are over 18 years of age, have at least nine teeth, have not received antibiotic treatment in the last three months, have not undergone periodontal treatment in the last six months, do not need antibiotic prophylaxis during oral procedures, including periodontal probing. Patients who have diabetes or other disease affecting their immune status were excluded. Pregnant and lactating women were excluded.

The research was ethically conducted according to the Helsinki Declaration of the World Medical Association. The Institutional Council on Medical Science of Medical University – Sofia approved the study protocols, including the recording of clinical measurements and the collection of saliva samples. All subjects signed informed consent prior to entry into the project and after reading the notification letter.

All patients underwent clinical examination and laboratory tests for the diagnosis of RA and osteoarthritis – history, physical examination, complete blood count, inflammatory biomarkers – erythrocyte sedimentation rate, C-reactive protein; immunological parameters – serum concentration of rheumatoid factor class IgM (RF-IgM) and serum concentration of ACPA. Peripheral blood from the cubital vein on an empty stomach was obtained from all the patients and was tested in the clinical laboratory and clinical immunology. An X-ray examination of palms and fingers of both hands was performed regarding the diagnosis of joint disease. The Disease Activity Score – CRP (DAS-28 (CRP)), which is a composite index, including clinical and laboratory data, have been determined.

All participants received a clinical periodontal examination, which includes: Hygiene index (HI), Papillary bleeding index (PBI), Periodontal pocket depth (PD), Clinical attachment loss (CAL), Bleeding on probing (BOP) and the presence of recessions for each periodontal unit. The examination is performed with a specialized graduated periodontal probe, and six sites of each periodontal unit were explored. PISA Indicator (Periodontal inflamed surface area), which shows the amount of inflamed...
ACPA in saliva and their association with periodontitis...

ACPA in saliva and their association with periodontitis...

PISA (Periodontal inflamed surface area), which calculates a value proportional to the periodontal surface calculated in mm² [4], was determined. PISA calculation is effectuated by entering periodontal measurements (CAL, PPD, BOP, gingival margin level) on a specially designed Microsoft Excel file. According to the authors, PISA reflects the severity and activity of the periodontal disease and may be associated with the impact of P on other systemic diseases.

Patients with P (first and second group) – have six sites in two quadrants with at least two affected teeth in each quadrant and each affected site has a probing pocket depth PPD ≥ 5 mm, clinical attachment loss CAL ≥ 3 mm, bleeding on probing BOP ≥ 20% of all examined sites (six sites per tooth). The study involved patients with P of II, III, and IV stages, according to the new classification [5]. Patients with P were classified with different disease activity based on the PISA indicator. Third and fourth group patients were periodontally healthy. Healthy individuals had PBI ≤ 10% of all examined sites (six sites per tooth), all of the sites showed probing pocket depth PPD ≤ 3 mm, no sites with clinical attachment loss CAL ≥ 2 mm [6].

Unstimulated whole saliva samples are taken from all participants in accordance with Navazesh’s method [7] and modified in accordance with IARC – International Agency for Research on Cancer (Collecting and Processing Saliva. The Molecular Methods database. Wed, 12/19/2012). No interventions were done in the mouth before the saliva sample was gathered. All persons rinsed mouth with plain tap water (10 ml) for 30 seconds and spat out before saliva was collected. Five minutes after oral rinsing, individuals spit into a sterile container at least once a minute for 10 minutes. Around 2 ml of the whole saliva was collected. The containers with saliva were placed in a vessel, filled with ice during collection and transportation to the laboratory, where the processing of the material was performed within 2 hours. In the immunologic laboratory, the material was centrifuged at 2600 × g per minute for 15 minutes at 4 °C. The supernatant was collected in a new cryotube, which contains a solution of lyophilized protease inhibitor (SigmaFast Protease inhibitor, Sigma-Aldrich Co, St. Louis, MO, USA) – 1 μL of a protease inhibitor for every mL of saliva. All samples were stored in a freezer at temperatures of –80° C until the time of analysis – quantifying salivary ACPA through en-
ка. Всички пръбби се съхраняват на т –80° C до момента на анализа – количествено определяне на ACPA в слюнка чрез метода ELISA (enzyme-linked immunosorbent assay) (Euroimmun AG, Германия).

За статистическа обработка на данните се използват адекватни методи на медицинската статистика: честотен анализ; вариационен анализ; кростабуляция (взаимни честотни разпределения на две качествени променливи); проверка за нормалност на разпределение на количествени променливи – Kolmogorov-Smirnov; дисперсионен анализ: T-Test или ANOVA в зависимост от броя на категориите на групиращата променлива, когато променливите са нормално разпределени; непараметрични подходи (Mann-Whitney U test, при повече от две категории на групиращата променлива), ако разпределението не е нормално; корелационен анализ: параметричен (Pearson Correlation) и непараметричен (Spearman’s rho). При проверка на хипотези, нулевата хипотеза се отхвърля, ако p < 0,05.

Резултати

Резултатите показват значимо по-високи концентрации на ACPA в слюнка при пациентите от 3-та група (с РА) спрямо здравите лица от 4-та група (Mann-Whitney U test, p < 0,001), спрямо пациентите от 1-ва група (с П) (Mann-Whitney U test, р = 0,016) и спрямо пациентите от 2-ра група (с П и РА) (Mann-Whitney U test, р = 0,017). Установихме значимо по-високи концентрации на ACPA в слюнка при пациентите от 1-ва група (с П) (Mann-Whitney U test, p < 0,001), както и на пациентите от 2-ра група (П и РА) (Mann-Whitney U test, p < 0,001). Установихме, че пациентите с РА общо (от 2-ра и 3-та група) са със значително по-високи нива на ACPA в слюнка спрямо пациентите от 4-та група (без П и без РА) (Mann-Whitney U test, p < 0,0001). Установихме, че пациентите с П общо (от 1-ва и 2-ра група) са със значително по-високи нива на ACPA в слюнка спрямо пациентите от 4-та група (без П и без РА) (Mann-Whitney U test, p < 0,0001) (табл. 1).

При изследваните пациенти с П (1-ва и 2-ра група) установихме статистически значима положителна корелация между концентрацията ACPA в слюнка и следните показатели: PISA; PD средно; BOP; съответно Spearman’s R = 0,525, p < 0,001, Spearman’s R = 0,290, p = 0,003, Spearman’s R = 0,263, p = 0,007 (фиг. 1, 2, 3).

Адекватни методи на статистическа обработка на данните са използвани за статистическа обработка на данните: честотен анализ; вариационен анализ; кростабуляция (взаимни честотни разпределения на две качествени променливи); проверка за нормалност на разпределение на количествени променливи – Kolmogorov-Smirnov; анализ на дисперсия: T-Test или ANOVA в зависимост от броя на категориите на групиращата променлива, когато променливите са нормално разпределени; непараметрични подходи (Mann-Whitney U test при повече от две категории на групиращата променлива), ако разпределението не е нормално; корелационен анализ: параметричен (Spearman’s rho). Значимостта на резултатите е оценена с p < 0,05.

Резултатите показват значимо по-високи концентрации на ACPA в слюнка при пациентите от 3-та група (с РА) спрямо здравите лица от 4-та група (Mann-Whitney U test, p < 0,001), спрямо пациентите от 1-ва група (с П) (Mann-Whitney U test, p = 0,016) и спрямо пациентите от 2-ра група (с П и РА) (Mann-Whitney U test, p = 0,017). Установихме значимо по-високи концентрации на ACPA в слюнка при пациентите от 1-ва група (с П) (Mann-Whitney U test, p < 0,001), както и на пациентите от 2-ра група (П и РА) (Mann-Whitney U test, p < 0,001). Установихме, че пациентите с РА общо (от 2-ра и 3-та група) са със значително по-високи нива на ACPA в слюнка спрямо пациентите от 4-та група (без П и без РА) (Mann-Whitney U test, p < 0,0001). Установихме, че пациентите с П общо (от 1-ва и 2-ра група) са със значително по-високи нива на ACPA в слюнка спрямо пациентите от 4-та група (без П и без РА) (Mann-Whitney U test, p < 0,0001) (табл. 1).

При изследваните пациенти с П (1-ва и 2-ра група) установихме статистически значими положителна корелация между концентрацията ACPA в слюнка и следните показатели: PISA; PD средно; BOP; съответно Spearman’s R = 0,525, p < 0,001, Spearman’s R = 0,290, p = 0,003, Spearman’s R = 0,263, p = 0,007 (фиг. 1, 2, 3).

The results showed significantly higher concentrations of ACPA in saliva in patients in group 3 (with RA) compared to healthy subjects in group 4 (Mann-Whitney U test, p < 0,001), to the patients in group 1 (with P) (Mann-Whitney U test, p = 0,016) and the patients in group 2 (P and RA) (Mann-Whitney U test, p = 0,017). We found significantly higher concentrations of ACPA in saliva in patients in group 1 (with P) compared to healthy subjects in group 4 (Mann-Whitney U test, p < 0,001) as well as in patients in group 2 (P and RA) compared to healthy subjects in group 4 (Mann-Whitney U test, p < 0,001). We found that all the patients with RA (2nd and 3rd group) had significantly higher levels of ACPA in saliva than patients in group 4 (without P and RA) (Mann-Whitney U test, p < 0,0001). We found that all the patients with P (1st and 2nd group) had significantly higher levels of ACPA in saliva than patients in group 4 (without P and without RA) (Mann-Whitney U test, p < 0,0001) (Table 1).

In the studied patients with P (1st and 2nd group) we found significant positive correlation between ACPA concentration in saliva and the following indicators: PISA, mean PD, BOP, respectively (Spearman’s R = 0,525, p < 0,001), (Spearman’s R = 0,290, p = 0,003), (Spearman’s R = 0,263, p = 0,007) (Fig. 1, 2, 3). We found a tendency for a
3). При изследваните пациенти с П (1-ва и 2-ра група) установихме тенденция за положителна корелация между концентрацията на АСРА в слюнката и брой на дълбоките пародонтални джобове (PD > 7 mm), както и тенденция за отрицателна корелация между концентрацията на АСРА в слюнката и брой плитки пародонтални джобове (PD ≤ 3 mm).

Таблица 1. Средни стойности на АСРА в слюнката в изследванияте групи

Table 1. Mean ACPA values in saliva in the study groups

<table>
<thead>
<tr>
<th>Групи пациенти</th>
<th>Брой пациенти</th>
<th>Средна стойност</th>
<th>Стандартно отклонение</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-ва група / Group 1</td>
<td>26</td>
<td>9,7500 RU/ml</td>
<td>± 8,66820</td>
</tr>
<tr>
<td>2-ра група / Group 2</td>
<td>28</td>
<td>11,3014 RU/ml</td>
<td>± 14,45057</td>
</tr>
<tr>
<td>3-та група / Group 3</td>
<td>26</td>
<td>35,7992 RU/ml</td>
<td>± 55,48167</td>
</tr>
<tr>
<td>4-та група / Group 4</td>
<td>25</td>
<td>2,7708 RU/ml</td>
<td>± 1,61123</td>
</tr>
</tbody>
</table>

Fig. 1. Зависимост между концентрацията на АСРА в слюнката и показателя ПISA при пациентите с П (1-ва и 2-ра група)

Fig. 1. Correlation between ACPA concentration in saliva and PISA in patients with P (1st and 2nd group)

Fig. 2. Зависимост между концентрацията на АСРА в слюнката и средна стойност на PD mm при пациентите с П (1-ва и 2-ра група)

Fig. 2. Correlation between ACPA concentration in saliva and mean PD mm in patients with P (1st and 2nd group)

Fig. 3. Зависимост между концентрацията на АСРА в слюнката и разпространението на BOP при пациентите с П (1-ва и 2-ра група)

Fig. 3. Correlation between ACPA concentration in saliva and BOP prevalence in patients with P (1st and 2nd group)
Установихме значима положителна зависимост между концентрацията на АСРА в слюнка и АСРА в серум при пациентите от 2-ра група (с П и с РА) (Spearman’s R = 0.972, p < 0.0001) и при пациентите от 3-та група (с РА) (Spearman’s R = 0.900, p < 0.0001), както и при всички пациенти с РА (от 2-ра и от 3-та група общо (Spearman’s R = 0.761, p < 0.0001) (фиг. 4).

Резултатите показват значима корелация между концентрацията на АСРА в слюнка и концентрацията на RF в серум при пациентите от 2-ра група (с П и с РА) (Spearman’s R = 0.953, p < 0.0001) и при пациентите от 3-та група (с РА) (Spearman’s R = 0.911, p < 0.0001), както и при пациентите с РА общо от двете групи (2-ра и 3-та група)(Spearman’s R = 0.894, p < 0.0001) (фиг. 5).

Откривхме значима положителна зависимост между нивата на АСРА в слюнка и активността на РА, отразена чрез DAS-28 (CRP) при пациентите с РА общо от 2-ра и 3-та група (Spearman’s R = 0.353, p = 0.009) (фиg. 6).

We found a significant positive correlation between ACPA concentration in saliva and serum ACPA concentration in patients of group 2 (with P and RA) (Spearman’s R = 0.972, p < 0.0001) and in patients of group 3 (with RA) (Spearman’s R = 0.900, p < 0.0001), as well as in all the patients with RA (2nd and 3rd group) (Spearman’s R = 0.761, p < 0.0001) (Fig. 4).

Our results showed a significant correlation between ACPA concentration in saliva and serum RF concentration in patients in group 2 (with P and RA) (Spearman’s R = 0.953, p < 0.0001) and in patients in group 3 (with RA) (Spearman’s R = 0.911, p < 0.0001), as well as in patients with RA in total, in both groups (2nd and 3rd group) (Spearman’s R = 0.894, p < 0.0001) (Fig. 5).

We found a significant positive correlation between saliva ACPA levels and RA activity reflected by DAS-28 (CRP) in patients with RA in total (2nd and 3rd group) (Spearman’s R = 0.353, p = 0.009) (Fig. 6).
Our results showed significantly higher levels of ACPA in saliva in patients with P and RA compared to healthy subjects, as well as in patients with P and without RA compared to healthy controls. We associate these results with the possibility that periodontal disease could be a source of citrullinated proteins that induce the synthesis of antibodies against them. In a previous study, Harvey et al. [8] found the presence of citrullinated proteins and antibodies against them in periodontal tissues and a positive correlation between the severity of gingival inflammation and the expression of citrullinated proteins. The authors found that most of the patients with high gingival crevicular fluid ACPA levels were in the periodontitis group compared to controls. According to these authors, ACPA production depends on the presence of generically existing citrullinated proteins in inflamed tissues, no matter the diagnosis gingivitis or periodontitis, and ACPA production depends on the genetic predisposition of the patients. We support this view. Our results showed in patients with periodontitis increased levels of ACPA in saliva, which are likely originate from periodontal tissues and result of two factors: increased production of citrullinated proteins in cases of periodontitis and genetically predisposed production of antibodies against increased citrullinated proteins.

Our results showed significant positive correlations between ACPA concentration in saliva and the mean PD, BOP, as well as a tendency for a correlation between ACPA concentration in saliva and the number of periodontal pockets with PD > 7 mm and a tendency for a negative correlation between ACPA concentration in saliva and the number of periodontal pockets with PD ≤ 3 mm. Previous studies have also found correlations between the expression of citrullinated proteins, antibodies against them in periodontal tissues, and the degree of inflammation [8, 9]. These data underlie the hypothesis of ongoing citrullination in periodontal tissues, which is dependent on the presentation of P and the possible local production of ACPA. The mechanism of these processes most likely being associated with the activity of P. gingivalis in protein citrullination and subsequent activation of ACPA-producing cells [8, 9, 10, 11]. In our opinion, increased salivary ACPA concentrations found in patients with higher periodontal
po-visoki показатели на П свързваме с локалната им продукция в тъканите на пародонт във връзка с активността на възпалението и послед-ващото им попадане в слюнката. Тези резулта-тати са в подкрепа на хипотезата за евентуална роля на П като извънствен източник на цитрулинирани протеини и антителата срещу тях, които биха могли при предразположени индивиди да допринесат за изявя на РА, а при съществуващ РА да утежнят хода му [11].

Ние установихме наличие на АСРА в слюнката на всички участници в изследването, като концентрацията им е значително по-голяма при пациентите от 3-та група с РА в сравнение с пациентите от 1-ва група с П, пациентите от 2-ра група с РА и П и индивидите от 4-та група, която са здрави. Заедно с това установихме силна положителна корелация между концентрациите на АСРА в слюнка и АСРА в серум при пациентите от 2-ра група с РА и П и при пациентите от 3-та група само П, както и при 2-ра и 3-та група общо (всички пациенти с РА). Считаме, че едно обяснение за наличието на АСРА в слюнка и корелацията на концентрациите им в слюнка с тези в серум при пациенти с РА е дифузията им от серум. Подобни резултати са представени в друго съвременно изследване [12], в което се установява силна зависимост между нивата на серумните и слюнчените АСРА при болните с РА, както и значимо по-високи нива на АСРА в слюнка при пациенти с РА в сравнение с нивата на АСРА в слюнка при здравите контроли.

Считаме, че тези резултати ни дават основание да обсъдим концентрацията на показателя АСРА в слюнка като евентуален диагностичен маркер за РА.
Изводи

Получените резултати показват по-високи концентрации на ACPA в слюнка при пациенти с РА, както и положителна корелация на слюнчевите нива на ACPA със серумните нива на ACPA, серумните нива на RF и показателя DAS 28 (CRP) при пациентите с РА. На основата на установените зависимости може да се предложи високата концентрация на ACPA в слюнка като леснодостъпен показател за РА, но са необходими допълнителни изследвания, за да се верифицира като маркер за РА. Ние считаме, че ако ACPA бъдат открити във високи концентрации в слюнка преди клиничната изява на РА, то това би определило такива индивиди във висок риск от развитие на РА, тъй като ACPA са високоспецифични за РА.

Установената връзка между показателите за РА и ACPA в слюнка обосновава лечението на РА като начин за превенция и контрол на РА и потвърждава необходимостта от тясно сътрудничество между специалисти в двете области.

Благодарности

Това проучване е финансирано от МУ – София, съгласно Договор по Грант № Д-94/23.04.2019 г. на тема: „Връзка между пародонтални заболявания и ревматоиден артрит. Изследване на генетичен полиморфизм на FcγRIIIA и изследване на антицитрулиниран протеинов антител в слюнка“.

Библиография / References

10. Rosenstein, ED et al. Hypothesis: the humoral immune response to oral bacteria provides a stimulus for the
30
T. Bolyarova-Konova, L. Stefanov, Zl. Kolarov and dr.


Постъпил за печат: 09.04.2020 г.

Submitted: 09.04.2020

Адрес за кореспонденция:
Доц. д-р Теодора Болярова-Конова, дм
Факултет по дентална медицина
Катедра по пародонтология
МУ – София
ул. Св. Г. Софийски 1
1431 София, България
e-mail: t_bolyarova@abv.bg

Correspondence address:
Assoc. Prof. Theodora Bolyarova-Konova, MD
Faculty of Dental Medicine
Department of Periodontology
MU – Sofia
1 St. G. Sofiski Str.
1431 Sofia, Bulgaria
e-mail: t_bolyarova@abv.bg